THE URIBE LAB
  • Home
  • Research Areas
  • Meet the lab
  • Publications
  • Latest news
  • Lab Mission Statement
  • Support our work

 Neural crest stem cells, enteric nervous system formation and cancer development

Picture

Globally, we are interested in the mechanisms that underlie the migration, proliferation and differentiation of neural crest stem cells, as well as understanding the role of the tissue microenvironment in influencing their cell fate choices. We also examine development of the peripheral nervous system and cancer in vivo.

One area of lab research focus is on understanding how the largest division of the peripheral nervous system, the Enteric Nervous System (ENS), is constructed during embryonic development from a stem cell population called the Neural Crest.  The ENS is composed of thousands of ganglia embedded within the walls of the gut.  Each ganglia consists of diverse enteric neuron subtypes and glial cells, which together regulates gut peristalsis, water balance and hormone secretions.  The number of neurons found within the ENS rivals the numbers of those found in the spinal cord, causing it to also be known as "the second brain." It is important to study development of the ENS so that we can understand not only how it forms and functions, but also to help us to understand how things go wrong in various gastrointestinal disease states (Hirschsprung disease, Achalasia), as well as neural crest stem cell defects, such as when neural crest become cancerous.  


During zebrafish embryogenesis, neural crest cells, a migratory stem cell population, migrate into the primitive gut in two chains (as depicted below in schematic and timelapse video), eventually surround the gut tube and turn into neurons by the 5th day in development in order to form the ENS.  Zebrafish are an excellent model system to investigate ENS development due to their rapid, transparent development, amenability to genetic manipulation and high-resolution live imaging.  As shown in the cartoon and images below, zebrafish ENS development is rapid and enteric neurons are easily detected as early as a few days post fertilization (dpf).  

Please see the Research Areas tab above for all of our research endeavors.


Picture

Time-lapse movie: Neural crest cells, marked by sox10:mRFP (Red Fluorescent Protein), migrate in chains caudally along the gut tube during the second day in development. 

3D animation to show the gut tube of a 3 dpf larval fish.  Freshly born enteric neurons are shown by expression of Phox2b (green) and HuC/D (red).  

Short movie clip of gut peristalsis in a 6 dpf larval fish.  A small bolus of food matter is seen traveling through the midgut in the gut tube (top of image). Posterior to the left.

The Uribe lab is a member of:
The Gulf Coast Consortia (GCC), through the BioSciences Department, Rice University
 profiles.gulfcoastconsortia.org/profilesystem/editprofile.php?pid=4356&onlyview=1
​

The Gulf Coast Consortia Cluster for Regenerative Medicine profiles.gulfcoastconsortia.org/profilesystem/editprofile.php?pid=3478&onlyview=1

The Institute of Biosciences and Bioengineering (IBB), Rice University
ibb.rice.edu/ibb-faculty


Currently funded by: Cancer Prevention & Research Institute of Texas http://www.cprit.state.tx.us​ , Rice University and the John S. Dunn Foundation johnsdunnfoundation.org via the Gulf Coast Consortia (GCC)
Picture
Picture
Picture
Proudly powered by Weebly
  • Home
  • Research Areas
  • Meet the lab
  • Publications
  • Latest news
  • Lab Mission Statement
  • Support our work